Camera input is not recognized!

Solution - Polynomial long division

(r+3)2(r2)2
(r+3)^2*(r-2)^2

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  ((((r4)+(2•(r3)))-11r2)-12r)+36

Step  2  :

Equation at the end of step  2  :

  ((((r4) +  2r3) -  11r2) -  12r) +  36

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(r) = r4+2r3-11r2-12r+36
Polynomial Roots Calculator is a set of methods aimed at finding values of  r  for which   F(r)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  r  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  36.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,9 ,12 ,18 ,36

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      36.00   
     -2     1      -2.00      16.00   
     -3     1      -3.00      0.00    r+3 
     -4     1      -4.00      36.00   
     -6     1      -6.00      576.00   
     -9     1      -9.00      4356.00   
     -12     1     -12.00     15876.00   
     -18     1     -18.00     90000.00   
     -36     1     -36.00     1572516.00   
     1     1      1.00      16.00   
     2     1      2.00      0.00    r-2 
     3     1      3.00      36.00   
     4     1      4.00      196.00   
     6     1      6.00      1296.00   
     9     1      9.00      7056.00   
     12     1      12.00     22500.00   
     18     1      18.00     112896.00   
     36     1      36.00     1758276.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   r4+2r3-11r2-12r+36 
can be divided by 2 different polynomials,including by  r-2 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  r4+2r3-11r2-12r+36 
                              ("Dividend")
By         :    r-2    ("Divisor")

dividend  r4 + 2r3 - 11r2 - 12r + 36 
- divisor * r3   r4 - 2r3       
remainder    4r3 - 11r2 - 12r + 36 
- divisor * 4r2     4r3 - 8r2     
remainder    - 3r2 - 12r + 36 
- divisor * -3r1     - 3r2 + 6r   
remainder      - 18r + 36 
- divisor * -18r0       - 18r + 36 
remainder         0

Quotient :  r3+4r2-3r-18  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(r) = r3+4r2-3r-18

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -18.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,6 ,9 ,18

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -12.00   
     -2     1      -2.00      -4.00   
     -3     1      -3.00      0.00    r+3 
     -6     1      -6.00      -72.00   
     -9     1      -9.00      -396.00   
     -18     1     -18.00     -4500.00   
     1     1      1.00      -16.00   
     2     1      2.00      0.00    r-2 
     3     1      3.00      36.00   
     6     1      6.00      324.00   
     9     1      9.00      1008.00   
     18     1      18.00      7056.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   r3+4r2-3r-18 
can be divided by 2 different polynomials,including by  r-2 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  r3+4r2-3r-18 
                              ("Dividend")
By         :    r-2    ("Divisor")

dividend  r3 + 4r2 - 3r - 18 
- divisor * r2   r3 - 2r2     
remainder    6r2 - 3r - 18 
- divisor * 6r1     6r2 - 12r   
remainder      9r - 18 
- divisor * 9r0       9r - 18 
remainder       0

Quotient :  r2+6r+9  Remainder:  0 

Trying to factor by splitting the middle term

 3.5     Factoring  r2+6r+9 

The first term is,  r2  its coefficient is  1 .
The middle term is,  +6r  its coefficient is  6 .
The last term, "the constant", is  +9 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 9 = 9 

Step-2 : Find two factors of  9  whose sum equals the coefficient of the middle term, which is   6 .

     -9   +   -1   =   -10
     -3   +   -3   =   -6
     -1   +   -9   =   -10
     1   +   9   =   10
     3   +   3   =   6   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  3  and  3 
                     r2 + 3r + 3r + 9

Step-4 : Add up the first 2 terms, pulling out like factors :
                    r • (r+3)
              Add up the last 2 terms, pulling out common factors :
                    3 • (r+3)
Step-5 : Add up the four terms of step 4 :
                    (r+3)  •  (r+3)
             Which is the desired factorization

Multiplying Exponential Expressions :

 3.6    Multiply  (r+3)  by  (r+3) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (r+3)  and the exponents are :
          1 , as  (r+3)  is the same number as  (r+3)1 
 and   1 , as  (r+3)  is the same number as  (r+3)1 
The product is therefore,  (r+3)(1+1) = (r+3)2 

Multiplying Exponential Expressions :

 3.7    Multiply  (r-2)  by  (r-2) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (r-2)  and the exponents are :
          1 , as  (r-2)  is the same number as  (r-2)1 
 and   1 , as  (r-2)  is the same number as  (r-2)1 
The product is therefore,  (r-2)(1+1) = (r-2)2 

Final result :

  (r + 3)2 • (r - 2)2

Why learn this

Latest Related Drills Solved